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Abstract
We present a new high-order accuracy method for the problem of a solid ob-
ject immersed in Stokes flow. The idea is to use asymptotic analysis to find the
largest component of the regularization error when using the regularized Stokeslet
method. Then some high-order terms are added to the largest component to make
sure that the resulting velocity field is divergence free. This is not usually done by
other authors.

3D Stokes Flow: Boundary Integral Formulation

The velocity at any field point x inside the Stokes flow surrounding a moving solid
object can be represented by [5]

ui(x) = −
1

8πµ

∫

∂D

Sij(x,y) fj(y) ds(y) (1)

where

Sij(x,y) =
δij

|x − y|
+

(yi − xi)(yj − xj)

|x − y|3

is the singular Stokeslet corresponding to delta distribution of the force on the sur-
face.

•Available methods, including the boundary element method (BEM) and the
method of regularized Stokeslet (MRS), suffer from low accuracy at fluid loca-
tions very near the boundary.

•We focuses on improving the regularization error for the MRS while making sure
that the resulting velocity field is divergence free as in the MRS. This is an impor-
tant requirement.

Methodology

•According the MRS method [3, 4], the velocity of the flow at the point x can be
approximated by

uδ
i (x) = −

1

µ

∫

∂D

Sδ
ij(x,y)fj ds(y) (2)

where Sδ
ij(x,y) is the regularized Stokeslet corresponding to the regularized delta

function φδ(x − y) ( = φδ(|x − y|)):

Sδ
ij(x,y) =

δij

|x − y|
Hδ

1(|x − y|) +
(yi − xi)(yj − xj)

|x − y|3
Hδ

2(|x − y|)

with (r = |x − y|)

Hδ
1(r) =

1

2

∫ r

0

s2φδ(s)ds −
2r

3

∫ ∞

r

sφδ(s)ds +
1

6r2

∫ r

0

s4φδ(s)ds (3)

Hδ
2(r) =

1

2

∫ r

0

s2φδ(s)ds −
1

2r2

∫ r

0

s4φδ(s)ds (4)

• Inspired by the work of Beale and Lai [2, 1], we use asymptotic analyses to find
the largest component of the regularization error

ǫδ(x) = u(x) − uδ(x) (5)

•Two steps:

– Find a class of regularized delta function so that the asymptotic analysis is fea-
sible. The widely used regularized delta function introduced in [3, 4] does not
belong to this class.

– Modified the corrections to get divergence free flow field while keeping the right
order of accuracy.

Main Results
Suppose that the surface of the solid object is smooth, the force is smooth along the
surface. Suppose further that φδ(x) is such that

φδ(x) =
1

δ3
φ

(x

δ

)

where φ(x) = φ(|x|) is a smooth function over R
3 satisfying the following condi-

tions:
• the integral of φ over R

3 is 1,

• the second moment of φ is 0,
• |φ(r)| ≤ C · r−m for r ≥ 1 and some constant C and constant m ≥ 7.

Let r = |x| and choose Hδ
1 and Hδ

2 as in equations (3)–(4)
x

x0 = y(0, 0)

r = |x− y|

y = y(u, v)

b

Fix a point x in the flow field. Let x0 be a point on the surface that is closest to x
and define b = |x−x0|. Let y = y(u, v) be a parametrization of the surface near x0 =

y(0, 0) such that {yu(0, 0),yv(0, 0)} is an orthonormal set, and define N =
yu × yv

|yu × yv|
at (0, 0). We can then write ǫδ(x) as

ǫδ(x) = (f − (f · N)f)ǫ(b, δ) + O(δ2) (6)

or as
ǫδ(x) = ǫ1 + ǫ2 + O(δ3) (7)

with explicit expressions for ǫ(b, δ), ǫ1, and ǫ2 provided for any blob φδ. The formulas
(6) and (7) are uniformly with respect to x.

Remarks:
•When b → 0 the second order and the third order formulas go to the same limit.
•When b → ∞ both corrections go to 0 as expected.

•Formula (6) is preferred over (7) when we have limited information about the sur-
face and the force distribution on the surface. Also, the divergence modification
of (6) is much simpler.

Test Problem
For numerical test, we consider a prolate spheroid parametrized by

y = (cos(v) sin(u), sin(v) sin(u), 2 cos(u))

translating with constant speed U = 1 along the z-axis and the regularization delta
function

φδ(r) =
1

δ3

(5 − 2r2/δ2)

2π3/2
e−r2/δ2

. (8)

Let
x0 = (cos(v0) sin(u0), sin(v0) sin(u0), 2 cos(u0))

with u0 = v0 = .7 be a point on the surface and define x = x0 + bN where N is
the unit outer normal vector at x0. Then the distance from x to the surface is b.
To evaluate the integrals, we create a regular mesh on the parameter space, uv-
rectangular [0, π] × [0, 2π], with step size h = π/200 in both directions, and then use
a forth-order Gregory’s quadrature. Thus, depending on the correction used, the
total error can be written as

O(δp) + c(δ)O(h4), p = 2, 3

where c(δ) is a bounded function.

Velocity Errors
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•The figure on the left is for b = .001 and on the right for b = π10−6 ≪ h.
•From the figures, we can see that the orders of convergence are as expected.
•Note that the figure suggests there is an optimal value of δ related to the dis-

cretization size h used for the surface integral quadrature. Below this optimal δ,
we will not see the benefits of the correction because the dominant error is from
the quadrature.

Approximated Divergence

3rd-order-corr 2nd-order-corr without-corr δ/h
−3.0164e − 07 1.6575e − 09 3.9899e − 10 1.6000e + 01
−3.5252e − 08 5.8417e − 10 4.1460e − 10 8.0000e + 00
−3.2689e − 09 2.2226e − 10 1.8301e − 10 4.0000e + 00

2.3766e − 10 1.7304e − 10 1.5970e − 10 2.0000e + 00
4.4474e − 10 2.1619e − 10 2.0903e − 10 1.0000e + 00
1.4702e − 10 −5.5023e − 12 −1.2577e − 11 5.0000e − 01
1.0870e − 09 1.0052e − 09 6.7951e − 10 2.5000e − 01
3.0973e − 09 3.1007e − 09 7.9280e − 10 1.2500e − 01

Future Directions

•Find an optimized relation deemed to exist between parameters (discretization
size on the surface and the regularizing parameter).

•Apply the methodology to slender body theory.
•Apply the methodology to flows other than Stokes flows, for example, Brinkman

flow (for porous medium), viscoelastic flows, etc.
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